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Error Estimates for Spatially Discrete 
Approximations of Semilinear Parabolic Equations 

with Initial Data of Low Regularity 

By M. Crouzeix, V. Thomre, and L. B. Wahlbin 

Abstract. Semidiscrete finite element methods for a semilinear parabolic equation in 
Rd, d < 3, were considered by Johnson, Larsson, Thom6e, and Wahlbin. With h the 
discretization parameter, it was proved that, for compatible and bounded initial data in 
Hal, the convergence rate is essentially O(h2+c,) for t positive, and for a = 0 this was 
seen to be best possible. Here we shall show that for 0 < a < 2 the convergence rate is, 
in fact, essentially O(h2+2c,), which is sharp. 

0. Introduction. The aim of this paper is to improve certain results from 
Johnson, Larsson, Thomee, and Wahlbin [2]. In this introduction we shall describe 
these results and motivate and state our new findings. 

The investigations in [2] are concerned with nonsmooth data error estimates 
for spatially discrete approximations to the solution of the initial-boundary value 
problem 

ut -Au = f (u) in Qx I, I =(O0, t] 
(0.1) u=0 on 90Q x I, 

u(0)=v inQ, 

where Q is a bounded domain in Rd, d = 1,2, or 3, with smooth boundary (90, 
and f is a smooth function on R which is bounded together with an appropriate 
number of its derivatives. (For a discussion of this assumption, see [2, Section 3].) 
It is assumed throughout that v, and hence u, is bounded. 

The spatially discrete approximation uh (t) is sought in a finite-dimensional space 
Sh C Ho (Q) and is defined by 

(0.2) (Uh,t, X) + (Vuh, Vx) = (f(Uh), x) for X E Sh, t e I, 

Uh(0) = POV, 

where (v, w) is the standard inner product in L2 = L2 (Q), and Po is the orthogonal 
projection in L2 onto Sh. It is assumed that the family {Sh } is such that the elliptic 
projection Pi, the orthogonal projection onto Sh with respect to the Dirichlet inner 
product (Vv, Vw), has an error of order hT, r > 2 integer, or, more precisely, 

IlPiw - wil < Ch IIWIIr for w E HB Ho, 

where 11 and 1r denote the standard norms in L2 and Hr = Hr(Q), respectively. 
It was first proved that (cf. also Helfrich [1]) 

h1uh(t) - u(t)11 < C(R)h2 log(1/h)t-1 for llvll < R, t E I. 
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It was then shown that, in contrast to the linear case, this result is essentially sharp, 
in the sense that an estimate of the form 

(0.3) 1Uh (to) - u(to)I < C(R, to)ha for hIVIILO < RX 

with hIVIILO the norm in Loo = Loo(Q), cannot hold for any a > 2 and to > 0, 
regardless of the order of approximation of the family {Sh}. This was first made 
plausible by considering the following system with 2wr-periodic boundary conditions: 

Ult = U1,XX + f(u2) where f(y) = 4y2 for IYI < 1, 
(0.4) U2,t = U2,xx on [-r, r] x (0, oo), 

ui (?) = 0, U2 (?) = V2. 

For the approximate solution, let h = 1/n, with n a positive integer, and set 

Sh = span{1, cos x, sinx,. .., cos(n - 1)x, sin(n - 1)x}, 

which has order of approximation 0(h7) for any positive r. With v2 (X) = cos nx, 
one has Pov _ 0, and the Galerkin solution vanishes identically. Hence the error 
equals the exact solution, which is easily checked to be 

(0.5) U = (ul,u2) = (n- 2(1 -e-2n2t) (1+ e-2n2t cos 2nx), e-n 2 tcos nx), 

whence, for large n, 

juh (to) - u(to)11 = hIu(to)I 1 Cn- = Ch2. 

Since v is bounded independently of n, this contradicts (0.3) for a > 2. 
Note that it is natural to use f (y) y2 as a model smooth nonlinearity, since 

the linear part of a Taylor expansion of f can be combined with uxx to form a 
linear elliptic operator. 

To analyze the case of slightly more regular data, a subset , of H& was intro- 
duced in [2], together with a defining functional Fo (v). The set X may be thought 
of as consisting of those v E H, nL Loo for which sufficient compatibility with the 
differential equation holds at K2 at t = 0 for hIu(t) j,> to be bounded even as t 
approaches 0. Here, H?t is defined for noninteger a by interpolation. It was shown 
that if v E X,, then, for any a with 0 < a < 2 and such that a + a < r, 

(0.6) hjUh(t) - u(t) < C(R)ha+ t-of/2 for FI(v) < R, t E I. 

The order of convergence was thus shown to be essentially two orders higher than 
the initial regularity. 

In order to try to modify the above counterexample, to see whether this latter 
estimate is sharp, we now choose v2,, (X) = n-i cos nx. Interpreting the H', norm 
for a periodic function v = '0 , cjeiiX to be 

= A 1/2 

11VII'X'#= E j2aiCji2 
kj=-oo 

we have hIv2,ajIa,# = constant, independent of n. Now the solution of (0.4) is 
u = (ul,a,u2,a) = (n-2auj(x,t),n-ru2(X,t)), where (ul,u2) are given by (0.5), 
and, by the same reasoning as above, 

hIuh(to) - u(to) = hIu(to)JI Cn-2-2a = Ch2+2a for large n. 
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This therefore does not show the O(h2+a) error estimate of [2] to be sharp. 
In this paper we shall show that the order of convergence suggested by the 

modified counterexample is the correct one. Under an additional approximation 
assumption for the elliptic projection (see (1.3)), we shall prove that if 0 < a < 2, 

2a < r then we have, with v = v(a) <1, 

(0.7) IUh(t) - u(t)ff < C(R)h2+2 (t- (2+a)/2 + t-v log(1/h)) 
for F.g(v) < R, t E I, 

which is an improvement over (0.6) by a factor ha in the case considered. In the 
present range of a, Fog(v) is equivalent to max(llvlla, IIVIILL). 

We remark that also the scalar spline counterexample to (0.3) given in [2, Section 
6] can easily be modified to show that no better rate of convergence than O(h2+2a) 
is possible in a result such as (0.7). 

The restriction a < 2 in (0.7) is probably due to our techniques of proof; our 
result covers optimal-order estimates for finite element spaces up to isoparametric 
quintics. 

The proof of the result (0.7) will be given in Section 2 below. It requires some 
refined error estimates for a linear nonhomogeneous parabolic equation, which we 
shall present in Section 1. 

In estimates like (0.7) it is natural to ask if the logarithmic factor can be removed, 
and it is a popular pastime to attempt to do so. We have not been able to accomplish 
this in general, but shall indicate at the end of Section 2 how this can be done in 
the cases 0 < a < 1, r > 4 and a = 0, r > 3. 

In [2] an O(h6+0a) error estimate was obtained also in maximum norm for v e c, 

a + a < r and t > 0, and a similar estimate was also demonstrated for the error 
in the gradient. These estimates were consequences of the L2 norm error estimates 
(0.6) and may therefore be improved analogously to (0.7), as will be briefly indicated 
in Section 3. 

1. Estimates for a Linear Nonhomogeneous Equation. In this section 
we shall consider the linear problem 

ut-Au =g inOQx I, 
(1.1) u = 0 on aQ x I, 

u(0) = v in Q, 

where g is a function of (x, t) which we assume to be in Loo (Loo) = Loo (I; Loo (Q)) 
(we shall frequently suppress the dependence of the spatial domain and the time 
interval in our notation when they equal Q and I, respectively). The semidiscrete 
Galerkin method is to find Uh: I -- Sh such that 

(1.2) (Uh,t, XX) + (Vuh, Vx) = (9, X) for X E Sh, t E I, 
Uh(0) = POV. 

We shall first recall some known results for the case of the homogeneous equation, 
i.e., g = 0 (see Thomee [4] and references therein). For this purpose we introduce 
the space Ha = Ht(Q) defined for any real a by the norm Iv Ia = 11(-i)a/2vII. 
For a a positive integer, Ha((Q) = {v E H'(Q); AJv = 0 on K2 for j < a/2} (see 
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[4, p. 34]). From now on we make the assumption that the error in the elliptic 
projection satisfies 

(1.3) lPiw - wjjI < ChIjjwjj-, 
for0?<y<r, -y-1>1, 0<l< r-2, weH-flH ndHo. 

Note that the approximation order -y never exceeds r. Thus, this assumption is 
satisfied, e.g., for isoparametric elements of degree r - 1, if the mesh domains are 
kept inside Q. We also introduce the notation E(t), Eh(t), and Fh(t) = Eh(t)PO - 

E(t) for the solution operator of the initial value problem (1.1) with g = 0, its 
discrete counterpart, and the resulting error. For initial data v E ft& we have the 
error estimate 

(1.4) JFh(t)vJ.. < Ch-1t-( l)/2IvIa for t E I, 1 + a <a < r. 

For a = 0, this follows from the corresponding estimate with I = 0 (cf. [4, Chapter 
3]) by a simple duality argument, since Fh(t) is selfadjoint on L2. We then obtain 
the general result for (-1, a) by interpolation between the results for (0, -Y) and 

- a), 0). These estimates depend on a corresponding smoothness property 
of the exact solution, namely, with Dt = 9/9t, 

(1.5) jD8E(t)vJ. < Ct-(p-a+28)/21vIa for t E I, ,l + 2s > a, 

and its discrete analogue. 
Our purpose is now to generalize (1.4) to the nonhomogeneous equation in (1.1), 

with application to the semilinear equation (0.1) in mind. We shall make the 
temporary hypothesis that the exact solution has the appropriate behavior for small 
t, and then verify this at the end of the section for the case that g(x, t) = f(u(x, t)) 
where u is the solution of (0.1). Here and below we denote, for various functions w 
on I, 

rt 
w (t) = w(s) ds. 

THEOREM 1. 1. Let a > 0 and v E Hk if a < 1, and let g be such that the 
solution u of (1.1) satisfies 

(1.6) IjDiu(t)llj < Ct-(u-a+2j)/2 for a < u < 2 + 2a, j = 0,1, t E I, 

and 

(1.7) ju (t)jj, < Ct1-("A-a)12 for a < ,u < 2 + a, t E I. 

Then we have for the error in (1.2) 

JUh(t) - u(t)1-l < Chat- (5-a-1)/2 
(1.8) for-y<?min(2+2a,r), 0<1<r-2, -y-a-1>0, tEI. 

For the purpose of proof we introduce a discrete analogue Th: L2 -- Sh Of 
T = (-A)1, defined by 

(VThf,VX) = (f,X) for X E Sh, 

and then, as is easily seen, the error e = uh - u in (1.2) satisfies 

(1.9) Thet+e=p for tEI, 
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where p = -(P1 - I)u. We shall also use the discrete negative seminorm IVKj,h = 

(Thv, v)1/2. We recall (cf. [4, p. 82]) that for 0 < j < r - 2 this seminorm is related 
to the norm in H- by 

(1.10) jWj_j,h < C(jwj.i + hjllwll) 

and 

(1.11) IWI_j < C(IwI-j,h + hi llwll). 

We begin with the following lemma. 

LEMMA 1. 1. Let e be a solution of (1.9) with The(O) = 0. For any positive 
integer k, there exists C = C(k) such that for any nonnegative integer j, 

tk e(t)l j,h < CSUp{slk+ |Pt(s)|_j,h + sk Ip(s)1-j,h + sk-1/21e(s) j-j_1,h} 
s<t 

(1.12) fort EI. 

Proof. Set temporarily (v,w) = (Thv,w), lvi - (v,v)'/2 = Ivj-j,h and lvl* = 

IVjip1,h = (ThV, v)/2. Note that Th is a positive semidefinite operator with 
respect to the semi-inner product (v, w). 

Taking the inner product of (1.9) against et we have 

1 d jel2 < (p, et) = d(P,e)-(pt,e) 

and, multiplying this inequality by t2k+1, 

2t(t2k+lIel2) < dt - t2k+l(p,e) 

+ _(2k + 1)t2keI2- (2k + 1)t2k(p e 

Integrating, we obtain 

t2k+ l le12 < C {t2k+l I (p, e) + j S2k+ l (Pt Ie) ds + s2k|e|2 ds 

+ J 2k (P, e) ds 

Cauchy-Schwarz' inequality and a kickback argument then give 

t2k+lle(t)12 < C {ft2k+llp(t)12 + (S2k+2lpj2 + s2kjPj2 ) ds 

(1.13) ? t 
+ | s2kiei2ds} 

We proceed to estimate the last term on the right. We take the inner product 
of (1.9) by e to obtain 

1 d jell + jel2 = (p,e) 
-2 dt 

and multiply this by t2k, whence 

2 d (t2ke*) + t2k el2 = t2k(p e) -kt2k-1 eI2 
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Integrating and using Cauchy-Schwarz' inequality on the first term on the right, 
we find 

f 
2kle12 ds < C {f a2klpl2 ds + 

f a2k-1leI ds}. 

Inserting this result into (1.13), we have 

t2k+ lle(t) 12 < C {t2k+llp(t)12 + j (s2k+2l1p2 + 82klplJ2) ds + j s2k-1 l 1e2 ds} 

and the desired result (1.12) follows upon dividing by t. This proves Lemma 1.1. 
We shall also need the following result from [4, p. 42]. 

LEMMA 1. 2. There exists a constant C such that for any nonnegative integerj, 

tle(t)l j,h < CSUp{S 2Pt(S)K-j,h + SIp(S)1-j,h + |p(S)I-j,h}. 
S<t 

We are now ready for the 
Proof of Theorem 1.1. We shall prove the theorem successively for increasing 

values of the gap variable -y - a - I and start with 0 < -y - a - I < 2. Within this 
range we first consider -y < I + 1. With the above notation, the solution of (1.1) 
may be written, by Duhamel's principle, as 

t 
u(t) = E(t)v + j E(t - s)g(s) ds, 

and similarly for the solution of (1.2), so that by subtraction 

rt 
e(t) = Fh(t)v + f Fh(t - s)g(s) ds. 

Here, by (1.4), 

lFh(t - s)g(s)lJl < Ch1(t -)-( -))/2llg(s)ll < Chl(t -s)-1/2 

and (1.8) follows using (1.4), which applies since now a < 1 and hence v E Ha, to 
bound Fh(t)v. 

We next consider the case 0 < a -aI < 2 with -y > I + 1. Recall that the error 
e = Uh- u satisfies (1.9) with p = -(P1 - I)u and The(O) = 0. We use Lemma 1.2 
together with (1.3), now applicable since -y -I > 1, and (1.10) to obtain 

tle(t) -I,h < Ch' sup{s21|Ut (S)j11_1_ + SIIU(S)11__. + lIii(s)ll_k_ }. 
St 

By (1.6) and by (1.7), which applies since a < 1-- < 2 + a, 

tle(t)I -,h < Ch- sup - Chrtl- 
s<t 

Similarly, 

th'Ile(t)ll < ChR-(--1 )/2 

and by (1.11) the desired result (1.8) follows in the present case, and thus generally 
for 0 < -y - a - I < 2. Note that this covers r = 2, so that we may assume below 
that r > 3. 

We shall now show by induction over m > 2 that (1.8) holds for m-1 < -y-a-l < 

m. We have already seen this to be true for m = 2, and assume it now to hold for 
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some value m. To carry out the induction step, let m <-y - a -I < m + 1. Then, 
since m - 1 <'y - a - (I + 1) < m, we have by the induction assumption 

le(s)l_(1+1),h < ChIs- (5-1--(1+1))/2I 

provided that I + 1 < r - 2, which we shall now assume. This is automatically 
satisfied for m > 3 since 1 + 1 < -a - m + 1 < r - m + 1, but the case m = 2 
needs separate consideration. For m > 3, by Lemma 1.1 and (1.6) we obtain, for 
k > (m + 1)/2, 

tkle(t)|-I,h < Csup{h Sk+II Ut (s)JIII_, + hlSklIU(S)111_I + Sk1/2le(t)lj(.+}),hl 
3<t 

< Ch" sup sk-(-I-a-l)/2 < Ch-rtk-(--a-l)/2 
S<t 

or 

le(t) 1-1,h < Ch-yt-(--). 

Similarly, 

IJe(t)II < Ch5-l-t-(--), 

so that the desired result follows by (1.11). 
However, for the proof to be complete, we still need to show (1.8) for the case 

2 < -y-a-I < 3, which has only been achieved so far if I + 1 < r-2. From 
1+1 < --a- 1 < r-al-1 we see that this is satisfied if a > 1. For O < a < 1 we 
have, using -y < 2 + 2a, that I + 1 < 2 + a - 1 < 2 and hence I + 1 < r -2 if r > 4. 
It remains to consider a < 1 together with r = 3. But then it is enough to treat 
O < I< a since I > a implies -Y - a -I < 2 + a -I < 2, which is covered by our first 
case. We shall see that (1.8) holds for r = 3, a < 1 and I replaced by 1' = 0 and a. 
For 1' = 0 this follows by our previous argument since then 1' + 1 = 1 = r - 2. For 
1' = a < 1 we have 0 < -y - 2a = -a - a -1' < 2 since -y > 2 and -y < 2 + 2a, so that 
(1.8) is valid by the first case. The desired result now follows for 0 < I < a by the 
obvious convexity inequality. 

The proof of Theorem 1.1 is now complete. 
We shall also need the following result. 

THEOREM 1. 2. Let 1 + a + I < r, O < I < r -2. Then there exists a constant 
C = C(R) such that, for the error in (1.2), 

jUh - UlIL2(I;H-((Q)) < Chl+'e' if hIUhIL2(I;H1+-(0)) < R. 

Proof. From the error equation (1.9) we have after multiplication by Th1e and 
integration, since The(O) = 0, 

e le(t)1-1,h + I leI h ds < ?I,h ds + - le hds, 

whence 
rt rt 

lel ,Ih ds < IPI,h ds. 

Using (1.10) and the error estimates (1.3) for the elliptic projection we have 

Ip(t)j_l,h < Chl+tl lu(t)lll+,, for t E I. 

The desired result now follows by (1.11), completing the proof of Theorem 1.2. 
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We shall next show that the assumptions of Theorems 1.1 and 1.2 are satisfied 
for the solution of the semilinear problem (0.1) with v E X,. Recall that for a < 2, 

= H= fl Ln , and Fa>(v) equals the norm max(lvlIa, IIVIILOO). We begin with the 
assumptions of Theorem 1.1 and remark that the major part of the proof is already 
given in [2]. 

LEMMA 1. 3. Let 0 < a < 2 and let u be the solution of (0.1). Then there exists 
a constant C = C(R) such that (1.6) and (1.7) hold for all v E 5 with F (v) < R. 

Proof. In [2, Theorem 2.2] it was proved that if 0 < 3 - a < 5, 2j < #, then, 
with C = C(R), 

(1.14) IfDiu(t)11J_2j < Ct-(8-a)/2 for Fci(v) < R, t E I. 

In particular, the inequality (1.6) is verified for j = 0 and a < ,u < 5 + a, which 
covers our case since 2 + 2a < 5 + a. For j = 1, (1.6) only follows for Ai < 3 + a, 
and this shows the desired estimate only if 0 < a < 1. We shall now show 

(1.15) IIUt(t)114+a < Ct-3 forl <a<2, teI. 

Together with the estimate (1.6) for ,u = 3 + a, this implies (1.6) with j = 1 for 
3 + a < ,u < 4 + a by interpolation. Since 2 + 2a is in this interval for 1 < a < 2, 
the proof of (1.6) would then be complete. 

We shall show (1.15) by successively demonstrating (1.14) with d = 6 + a for 
j = 3,2, and 1. For j = 3, w = uttt satisfies 

Wt - Aw = D3tf(u) = f1"(u)u3 + 3f"(u)ututt + f'(u)uttt. 

By Duhamel's principle we have 
,t 

w(t) = E(t/2)w(t/2) + f E(t - s)D 3f (u(s)) ds = E(t/2)w(t/2) + I(t). 
t/2~~~~~ 

Here, by (1.5) and (1.14), which may be applied since 6 - a < 5, 

IJE(t/2)w(t/2)Jla < Ct-,/2lIuttt(t/2)11 < Ct-a/2t-(6-a)/2 Ct-3. 

Further, using Sobolev's inequality, 

JID 3f (U)II < C(IfUtfJ3 + IfUttll HfuthfL + IlUtttll) 
< C(flutI3F + IlUttl1 flutlf2 + IIutttII) 

and hence, using known cases of (1.14), 
rt 

III(t)II ? cj (t - s)-a/2 IID3 f (u(s)) 11 ds 
/2 

? Ctl-a/2(t-3(3-a)/2 + t-(4-a)/2t-(4-a)/2 + t-(6-a)/2) < Ct-3, 

which shows the case 3 = 6 + a, j = 3 of (1.14). 
We next take j = 2. Since Autt = uttt - D2f(u), we have by elliptic regularity 

IIuttII2+a < Cllutttl a| + CIID 2f (U) IIa) 

and, by the case just considered, it suffices to bound the second term. We now use 
the inequality 

JI(lkfla < 111211f11fa for 1 < a < 2, 
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which follows by interpolation from the cases a = 1 and 2. We also apply Moser's 
lemma (cf. [3]): For any positive integer k, 

Ilf(u)Ilk < C(K)(1 + IlUIlk) for IUIILO, < K. 

We obtain 

ID 2f(u)II0 = lIf"/(u)uU + f'(u)uttIIo, < Ilf"(U)1I211U 21Ia + IIf'(u)jj2jIuttIlcI 

C 0(1 + 11UI12)(lIUtII21IUtlla + IlUttla), 

so that, by known cases of (1.14), 

IIDfI(U)II1 < Ct-(2-a)/2(t-(4-ce)/2t-1 + t-2) < Ct-3, 

and the case ,B = 6 + a, j 2 of (1.14) follows. 
For the final step of the proof of (1.15) we use again elliptic regularity to obtain 

jlUtII4+a ? CIIAutII2+a < C(IjuttII2+a + IIDtf(U)jj2+a). 

Again, it only remains to consider the last term. Here we shall use 

11(p,011 < jjPjj43-9jjj-3jjV)1j for 3 <# < 4, 

which follows by interpolation from the cases 3 = 3 and /3 = 4. Together with 
Moser's lemma, this gives 

IIDtf(u)jj2+ca = IIf'(U)UtII2+o, < C(1 + IIuII3)2-,(l + IIUII4)II1jUtII2+o, 
whence 

IDtf(u(t)) 112+?a < Ct-(2- )(3-e)/2t-(a-1)(4-a)/2t-2 = Ct-3. 

We have now proved (1.15). 
It remains to prove (1.7). For this purpose we show this inequality for p = a and 

= 2 + a, from which it then follows in general by interpolation. Since ju(t) I is 
bounded on I, we have 

st 

FIiC(t)I,I < j ju(s)jja ds < Ct for t E I. 

As concerns ,u = 2 + a, we note that by integration of the differential equation we 
have 

u(t) - v - Ait(t) = f(u(t)) for t E I, 

and hence by elliptic regularity, 

(1.16) IIiiI2+ce < C0lAiullo, < C{jlVllce + jlu11a + If(U)llae} < C{1 + lIf(U)l1la}. 
For the last term on the right we note that with k = [a] + 1, 

jjf(U(S))) Ia < Cjjf(U(S)) j1-/kjjf (U(S)) jj,/k 

< C(1 + jjU(S)jjk)a/k ? 0S(2-)a/4 for t E I, 

so that 

||f(u1)(0)|la < Cl 8-(2-a)a/4 ds < Cl s- 1/4 ds < C. 

By (1.16) this proves (1.7) for p = 2 + a, which completes the proof of Lemma 1.3. 
We finally turn to the assumptions of Theorem 1.2. 
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LEMMA 1.4. Let 0 < a < 2. Then there exists a constant C = C(R) such that 
v E R0 implies that the solution u of (0.1) belongs to L2(H1?+) and 

IIUIIL2(H1+- ) < C for Fa (v) < R. 

Proof. Consider first the case 0 < a < 1 and multiply the differential equation 
in (0.1) by (-A)'u in L2, which is legitimate since u(t) E H2 for t E I. We obtain 

2 
d uII + 1U12+ = (T(l -)/2 f(u)f (U (1 +a)/2u) < 1 1f(u) U 2 + 1 1U1+2 

whence by integration 
rt rt f I ds < V1|2 + I llf(U)12 ds < C. 

For 1 < a < 2, we have by elliptic regularity 

rt rt 

jf(u)JJ 2+1 ds < C/II1 ds C]1 + ds 

(1.17) t ot t 
< C+ !! u112? d(s+(Cu (U)Iu2), ds. 

1 2 

Here, 

rt rt t f f (U)1 2_d ds <+ f (U) 12ds < C (1 + IU12)ds<C fortEI. 

To estimate the first term on the right in (1. 17), multiply the equation (0. 1) by 

(-A) )i-lut to obtain 

?a_,+ 2dt ut) +(f(u),j () ()a1u)d 

which after integration becomes 

| Ut|2 - ds + 2 lu(t)12 

t 

< IV12 + (f (u) (_-)a-1ul- (f'(u)us, (-A)c-lu) ds 

rt 
=V12 + (Tl-12f (U), (_A)a/2u)1I t J (T1-a/2(fI(U)U8), (_t)a/2u) ds 

? Iv12 + C (lIf u(t))Ir Iu(t)lj + lif(u(O))jl . IvIj + j ilu11i julo ds) 

rt rt 
? C+Cf C IusII ds < C+CJ s-(1-a/2) ds < C. 

This completes the proof of Lemma 1.4. 

2. The Main L2 Error Estimates. The main result in this section is the 
following 

THEOREM 2. 1. Let 0 < a <2, 2 + 2a < r, and letUh and u be the solutions of 

(0.2) and (0.1), respectively, with v E 60f. Then there exist constants C = C(R, a) 
and v = v(a) < 1 such that 

(2.1) IIuh(t) - u(t)JJ < Ch2+2a(t-(2+a)/2 + log(1/h)t-1') for Fc(v) < R, t E I. 
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By Duhamel's principle the exact and approximate solutions of (0.1) satisfy the 
nonlinear integral equations 

rt 
(2.2) u(t) = E(t)v + E(t - s)f(u(s)) ds 

and 
t 

(2.3) Uh (t) = Eh (t)Pov + Eh (t - s)Po f (uh (s)) ds, 

respectively. The proof of the theorem will depend on introducing as an auxiliary 
function u2: I -. Sh, the Galerkin solution of the linear nonhomogeneous equation 
with right-hand side f(u(x, t)), i.e., 

rt 
(2.4) Uh (t) = Eh (t)POv + ] Eh (t - s)Pof (u(s)) ds. 

Using (2.2), (2.3), and (2.4), we may then write for the error e = Uh - u, with 
e = Uh - U, 

rt 

(2.5) e(t) = e(t) + f Eh (t - s)Po (f (uh (S)) -f (u(s))) das 

By the results of Section 1 we have access to a variety of estimates for e which 
will be applied in the analysis of (2.5). For this purpose we introduce an integral 
operator J defined for functions w = w(x, t) by 

(Jw) (t) = J E(t - s)f'(u(s))w(s) ds, 

and rewrite (2.5) in the form 

(2.6) e = go + 91 + 92 + Je, 

where go =, 

91 (t) = (Eh (t - s)Po - E(t - s)) (f (uh (S)) -f (u(s))) ds, 

and 
t 

92(t) = / E(t - s) [(f (uh (s)) -f (u(s)) - f'(u(s))) (uh (S) - u(s))] das 

Define now ei to be the solutions of the integral equations 

(2.7) ei=gi+Jei, i=0,1,2. 

By standard techniques for Volterra integral equations these equations have unique 
solutions, and it is clear from (2.6) that the error e may be represented as e = 
eO + e1 + e2. In estimating the different terms of the error, the following easily 
proved version of Gronwall's lemma will be used repeatedly. 

LEMMA 2.1. If 

0O p(t) < r(t) + c jo(s) dds for t E I, 

then 

IIPIIL2(I) < CIrllL2(I) 
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and 

O0(t) < r(t) + c Jr(s) ds for t E I. 

For the proof of Theorem 2.1 we start by deriving some preliminary low-order 
estimates for e. By (2.5) we have 

rt 

jle(t) 11 < Ile(t) 11 + Cf Jje(s) 11 ds, 

so that by Lemma 2.1, Theorem 1.2 and Lemma 1.4, 

(2.8) ||e(t)IIL,(L,,) < CI|e(tIIL2(L2) < Chl+c 

and, using also Theorem 1.1, 

(2.9) Ije(t)JI < Cha+c (t-o/2 + Cf 8f/2 ds) < Cha+ct-a/2 for oa < 2, t E I. 

We proceed to derive the more precise estimates needed for el and e2. By Lemma 
2.1, 

t 
(2.10) IIei(t)II < ? gj(t)II +cf IIgi(s)IIds for i = 1,2. 

Here, by the results (1.4) for the homogeneous problem and (2.9) with a = (2+a)/2, 
rt 

1191(t)j| < Cf Ch(2+c)/2(t - s)-(2+a)/4 Ile(s) II ds 

t 
< ] Ch(2+c)/2(t _ s)-(2+a)/4h(2+3a)/2%-(2+a)/4 ds < Ch2+2at-a/2 

0 

Hence, by (2.10), 

(2.11) jel(t)II < Ch2+2at-a/2. 

By Taylor's theorem we have, for some u(x, s) = u E int[uh, u], 

92 (t) = 2 f E(t - s) f " (f)e(s)2 ds, 

so that 
t 

(2.12) 1192(t)II < cf IIE(t- S)I1L1 -L2Ile(s)II2 ds. 

Since by Sobolev's lemma and (1.5), for d/4 < 6 < 1, 

IIE(s)i/IIL. < CIIE(s)0II26 < CS-6IiII for s E I, 

we find by duality, since E(s) is selfadjoint on L2, that 

jJE(t -S)11L1.L2 < C(t -) 

Hence, by (2.12), (2.8) and (2.9) with af = 1, 

l192(t)JI <? C (j +//) (t - s) e(s)112 ds 

t 

< Ct lIle(s) 112(2 +c| (t -s)-'h 2+2a s-1 d-s < Ch 2+2cet-6, 
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and thus, by (2.10), since 6 < 1, 

(2.13) 11e2(t)II < Ch2+2at-1 . 

We finally estimate eo. From (2.7) we see that w' = eO - e satisfies the integral 
equation w = Je + Jw, and hence, by Lemma 2.1 and the triangle inequality, 

(2.14) lleo(t)ll ? IIe(t)II + IIJe(t)II + / IIJe(s)II ds. 

We shall show that, with v = v(a) < 1 for 0 < a < 2, 

(2.15) 11 Je'(t) II < Ch 2+2cet-v log(llh). 

Together with Theorem 1.1, (2.14) implies that Ileoll is bounded by the right-hand 
side of (2.1). In view of our above estimates (2.11) and (2.13) for e1 and e2, this 
would complete the proof of Theorem 2.1. 

For the purpose of showing (2.15) we first note that it suffices to consider the case 
h2+2 < t/2, since in the opposite case, lJe'(t)ll is trivially bounded by Ch2+2% We 
now write Je(t) = Jo (t) + J1 (t) + J2 (t) corresponding to the intervals of integration 
(o, h2+2c), (h2+2c,t/2), and (t/2,t), and IIJo(t)ll is again trivially bounded by 
Ch2+2a. Further, by Theorem 1.1, 

t t 
11J2(t)ll < C o le(s)ll ds < Ch2+2c ,-(2+c)/2 ds = Ch-2+2at-a/2 

t/2 t/2 

It remains to estimate J1 (t). We have 

rt/2 

(t)l(0 = sup J Q(t, s; w) ds, 
11w11=1 h2+2ot 

where, with llwll = 1, p = p(s) = f'(u(s)) and b = i(t - s) = E(t - s)w, 

Q(t, s) = Q(t, s; w) (E(t - s)f'(u(s))e(s), w) = (8, (cn).) 

We consider first r > 4, in which case an error estimate for e in H-2 is available, 
so that, since pi E H2, 

(2.16) IQI < CII1-2 II(cn/II2 < CII1-2 .II(I12 IIV/IIL. + CI1-2 II9cIIL 11'I112, 

where the second inequality follows from the Gagliardo-Nirenberg inequality, as in 
the proof of Moser's lemma. We have 119IIL. < C, and from Moser's lemma and 
(1.6), 

11o(8)112 < C(1 + JIu(a)112) ? C&-(2-)/2. 
Using (1.8) and Sobolev's lemma, we get, with 3/4 < 6 < 1, 

IQ(t, s)l < Ch-2+2a)-a/2(-(2-)/2(t_)- + (t 8)-l) 

< Ch2+2c('-lt-6 + s-a/2t-l) for s < t/2. 

Hence, with v = max(6, a/2), 
I t/2 

IIJi(t)II < Ch2+2 (-'t6 + s-a/2t ) ds < Ch2+2 log(1/h)tJv. 
h2+2a 

This proves (2.15) and thus the theorem in case r > 4. For r = 3, the estimate 
(2.16) is changed into 
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The argument then proceeds as before with the obvious changes to show that 

| J1(t) | < Ch 2+2a log(l/h)t-' . 
This completes the proof of Theorem 2.1. 

In some cases it is possible to remove the logarithmic term in the estimate (2.1). 
We shall indicate how to do this for O < a < 1, r > 4, and also for a = O, r > 3. It 
is clear from the above analysis that it suffices to consider the term J1(t). 

We first note that for u(s) E Ho nL Loo with 0 < 3 < 2, it is possible to find 
U2(8), so that for r > 0 given, 

lu(s) - u2(8)1l < CT3llu(s)ll3, 

lu2(s)112 ? Cr-(2-3) lu(s).8/ I 

and 

(2.18) IIu2(s)IILo. < Cllu(s)llL., 
where the constants do not depend on r. The function U2 may be produced by 
extending u smoothly to Rd and then applying a suitable convolution operator, 
or, since only small T are at issue (U2 = 0 works for large r), by taking U2 as the 
L2-projection into a suitable (fictitious) finite element space on Q. Applying this 
to the solution u of (1.2), we set 02 = f'(U2) and 3 = 1 + a < 2 to obtain 

Ike - P211 = /lf'(U) - f'(U2)// < C//U - U2// < CT'3//U///. 

Further, by Moser's lemma, using (2.18), 

/ke2112 < C(l + //U2112) < C(1 + T ( -)||U|1p). 

Now, with notation as in the proof of Theorem 2.1, 

Q(t, s) = (e, ( - (P2)?) + (e, P2,) 

and thus, for s < t/2, 

/Q(t, 8)/ < 111 /(P - (P2)/'11 + Vl/-21/P2P112 

< CI/'(s)/ //p- (P2)(s)//t6 + C/e(s)/_2(| 2//2t1 6 + t p11211L.t 1). 

Hence, integrating in time and using Cauchy-Schwarz's inequality, 

|lJ1(t)ll < C||e||L2(L2)7"||UIIL2(HO)t 

+ C/V/L2 (ft-2)T (2'3) /U/IL2(H0)t + C//el/Lj(H-2)t. 

From Lemma 1.4, //UIIL2(H 0) is bounded (/3 = 1 + a). Using Theorem 1.2 and (1.8), 
we obtain 

II/J(t)/I < C(h'37rt-6 + h2+7-(2-8)t- + h2+2at-a/ 

and taking r = h, 

/I J1(t) // < Ch2+2a(t-6 + t-a/2) 
which together with our previous estimates yields 

//e(t)// < Ch2+2ar-(2+a)/2 for t E I 
In the case a = 0, r = 3, we use (2.7), Moser's lemma and Theorem 1.1 to obtain 

/Q(t, s)/ < C/'(s)I-1(1 + //u(s)/1)Ut6 + Ch2s"2t"2 for s < t/2. 
Proceeding as before, using Theorem 1.2, this gives IIJ1(t)I/ < Ch2t-6, so that 
finally //e(t)// < Ch2t-1 for t E I. 
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3. Error Estimates for Gradients and in Maximum Norm. This section 
will briefly indicate how Theorem 2.1 can be used to derive the estimates mentioned 
in the title. The techniques are those of [2, Sections 4 and 5], and we shall merely 
point out the slight modifications needed. We assume that the reader is familiar 
with the notation of those two sections. For our first result we assume in addition 
to (1.3) that, with Qlh C Ql denoting the mesh domains, we have for 1 < s < r, 

(3.1) IIVPlw - VWIIL2(Qh) < Chs-1IwIl8 for wE H fnHol. 

THEOREM 3.1. Let 0 < a < 2, 2 + 2a < r-1. Then there exists a constant 
C = C(R, a) such that for the error in (0.2) 

JIVUh(t) -'Vu(t)11L2(Qh) < Ch2+2o log(1/h)t-3/2-ae/2 for Fa (v) < R, t E I. 

Sketch of Proof. By (3.1) and (1.6) it clearly suffices to estimate 0 = Uh - Plu. 
Proceeding as in [2, Theorem 4.1], but multiplying the basic equation for 0 by t5 
rather than t3, we find with e = Uh-u, 

t511/VO(t) //2 < Cf (s3 Ile12 + s3/lpll2 + s5/IptIP/2) ds. 

Now use the bound of Theorem 2.1 for e and (1.6) for u and ut to obtain 

t5IIVO(t)II2 < Ch2(2+2a) log2 (1/h)t2-, 

which proves Theorem 3.1. 
As for maximum norm error estimates, we have the following result, assuming 

that, with 6 = 0 or 1, 

IlPiw - wIIL, < Ch'(log(11h))6jjwws for 0 < s< r, w = 0 on aOl. 

THEOREM 3.2. Let 0 < a < 2, 2 + 2a < r. For any to E I there exists 
C = C(R, to, a) such that for the error in (0.2) 

IIuh(t) - u(t)IIL., < Ch2+2 log(1/h) for FCX(v) < R, to < t < t*. 

Sketch of Proof. For p we have 

(3.2) Ilp(t) 1Lo < Ch2 2 (log(1/h))8llullWg02+ < C(t)h2+2 (log(1/h))6. 

For 0, following [2, Proof of Theorem 5.1], with E small positive, 
t 

t"110(t)lIL0 < C f (t - s)-d/4 c[sI%i1 (Ilell + IplI) + is Ilpt l|)] ds, 

whereupon Theorem 2.1 and (1.6) give, for 3 large enough, 

t 110(t)IIL.O < Ch2+ log(l/h)t,8-a/-4- 

and Theorem 3.2 follows. 
To estimate the exact time-dependence in (3.2), one would, perhaps, use 

Sobolev's inequality, so that 

l|UllW2+2- <? CllUll2+2ci+d/2+e. 

Since the gap (2 + 2a + d/2 + E) - a may now exceed 5, a further extension of [2, 
Theorem 2.2] is needed. For the sake of brevity we shall not pursue the matter 
further. 
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Finally, for the maximum norm of the error in the gradient we have the following 
result, assuming that, with 6 = 0 or 1, 

IIVPiw - VW11LO,(Qh) < ChSl1(log(1/h))6jjwI ,q for 1 < s < r, w = 0 on A9. 

THEOREM 3.3. Let O < a <2, 2 + 2a < r-1. For any to E I there exists 
C = C(R, to, a) such that for the error in (0.2) 

/IVuh(t) - Vu(t)11L.,(nh) < Ch2+2c log(1/h) for Fa(v) < R, to < t < t*. 

Sketch of Proof. The estimate for Vp is treated as in Theorem 3.2. We next 
note the following easily proved extension of [2, Lemma 5.2]: 

(3.3) IIVEh(t - s)whIILO < C(t -s) d/4-i- IWh|ll-i, i = 0, 1. 

Recalling from [2, Proof of Theorem 5.1] that 

t'30(t) = (t/2 + f) Eh(t - s)[s3Po(we - Pt) + /3s-10] ds _ I, + I2, 
O t2 

we proceed to estimate I, and I2. For I, we use (3.3) with i = 1 to obtain 
~'t/2 

t'311V11(t)11L00 ? 010 (t/ - s) d/4 14 [sI(IIweII + 11ptIl) + s/ 1(IIell + I11IP)] ds, 

whereupon using Theorem 2.1 and (1.6), 

JI VIl (t) 11 Loo < Ch2+2a log(l/h) . 

For I2 we apply (3.3) with i = 0 and find 

t 

t'3jVI2(t)IL. < Co (t -_s) d/4e[sI(IweIjHj1(nh) + JIPtIlH1(nh)) 
t2 

+ s','1 (IIeIIH1((h) + IIPIIH1 (Qh))] ds, 

so that use of Theorem 3.1 and the smoothness of u on I yields 

jj VI2 (t) 11Loo < Ch 2+2, log(l/h) . 

This proves Theorem 3.3. 
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